Enhanced Hematopoietic Stem Cell Function Mediates Immune Regeneration following Sex Steroid Blockade
نویسندگان
چکیده
Mechanisms underlying age-related defects within lymphoid-lineages remain poorly understood. We previously reported that sex steroid ablation (SSA) induced lymphoid rejuvenation and enhanced recovery from hematopoietic stem cell (HSC) transplantation (HSCT). We herein show that, mechanistically, SSA induces hematopoietic and lymphoid recovery by functionally enhancing both HSC self-renewal and propensity for lymphoid differentiation through intrinsic molecular changes. Our transcriptome analysis revealed further hematopoietic support through rejuvenation of the bone marrow (BM) microenvironment, with upregulation of key hematopoietic factors and master regulatory factors associated with aging such as Foxo1. These studies provide important cellular and molecular insights into understanding how SSA-induced regeneration of the hematopoietic compartment can underpin recovery of the immune system following damaging cytoablative treatments. These findings support a short-term strategy for clinical use of SSA to enhance the production of lymphoid cells and HSC engraftment, leading to improved outcomes in adult patients undergoing HSCT and immune depletion in general.
منابع مشابه
Enhanced immune system regeneration in humans following allogeneic or autologous hemopoietic stem cell transplantation by temporary sex steroid blockade.
PURPOSE To determine if temporarily blocking sex steroids prior to stem cell transplantation can increase thymus function and thus enhance the rate of T cell regeneration. EXPERIMENTAL DESIGN This was a pilot study of luteinizing hormone-releasing hormone agonist (LHRH-A) goserelin given 3 weeks prior to allogeneic or autologous hemopoietic stem cell transplantation and administered up to 3 m...
متن کاملWithdrawal of sex steroids reverses age- and chemotherapy-related defects in bone marrow lymphopoiesis.
A significant decline in immune function is characteristic of aging. Along with the involution of the thymus and associated impaired architecture, which contributes to profound loss of naive T cell production, there are also significant declines in B cell development and the progenitors that support lymphopoiesis. These collectively lead to a reduced peripheral immune repertoire, increase in op...
متن کاملSex steroid blockade enhances thymopoiesis by modulating Notch signaling
Paradoxical to its importance for generating a diverse T cell repertoire, thymic function progressively declines throughout life. This process has been at least partially attributed to the effects of sex steroids, and their removal promotes enhanced thymopoiesis and recovery from immune injury. We show that one mechanism by which sex steroids influence thymopoiesis is through direct inhibition ...
متن کاملA review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell
Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...
متن کاملPleiotrophin mediates hematopoietic regeneration via activation of RAS.
Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015